DNA methylation profiles of human active and inactive X chromosomes.
نویسندگان
چکیده
X-chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell. To characterize epigenetic changes that accompany this process, we measured DNA methylation levels in 45,X patients carrying a single active X chromosome (X(a)), and in normal females, who carry one X(a) and one inactive X (X(i)). Methylated DNA was immunoprecipitated and hybridized to high-density oligonucleotide arrays covering the X chromosome, generating epigenetic profiles of active and inactive X chromosomes. We observed that XCI is accompanied by changes in DNA methylation specifically at CpG islands (CGIs). While the majority of CGIs show increased methylation levels on the X(i), XCI actually results in significant reductions in methylation at 7% of CGIs. Both intra- and inter-genic CGIs undergo epigenetic modification, with the biggest increase in methylation occurring at the promoters of genes silenced by XCI. In contrast, genes escaping XCI generally have low levels of promoter methylation, while genes that show inter-individual variation in silencing show intermediate increases in methylation. Thus, promoter methylation and susceptibility to XCI are correlated. We also observed a global correlation between CGI methylation and the evolutionary age of X-chromosome strata, and that genes escaping XCI show increased methylation within gene bodies. We used our epigenetic map to predict 26 novel genes escaping XCI, and searched for parent-of-origin-specific methylation differences, but found no evidence to support imprinting on the human X chromosome. Our study provides a detailed analysis of the epigenetic profile of active and inactive X chromosomes.
منابع مشابه
X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis.
Lyon has proposed that long interspersed nuclear element 1 (LINE-1 or L1) repeats may be mediators for the spread of X chromosome inactivation. Cells from ICF patients who are deficient in one of the DNA methyltransferases, DNMT3B, provide an opportunity to explore and refine this hypothesis. Southern blot and bisulfite methylation analyses indicate that, in normal somatic cells, X-linked L1s a...
متن کاملInduction of XIST expression from the human active X chromosome in mouse/human somatic cell hybrids by DNA demethylation.
X chromosome inactivation occurs early in mammalian development to transcriptionally silence one of the pair of X chromosomes in females. The XIST RNA, a large untranslated RNA that is expressed solely from the inactive X chromosome, is implicated in the process of inactivation. As previous studies have shown that the XIST gene is methylated on the active X chromosome, we have treated a mouse/h...
متن کاملAnalysis of methylation of a human X located gene which escapes X inactivation.
The gene MIC2 is located in the pseudoautosomal region at the ends of the short arms of the X and Y chromosomes. In females MIC2 escapes X inactivation. We have analyzed the methylation pattern of MIC2 on the active X, the inactive X chromosomes, and the Y chromosome. The 5' end of the gene contains a GC rich region which is unmethylated on the active X, the inactive X and on the Y. The body of...
متن کاملX inactivation of the FMR1 fragile X mental retardation gene.
X chromosome inactivation has been hypothesised to play a role in the aetiology and clinical expression of the fragile X syndrome. The identification of the FMR1 gene involved in fragile X syndrome allows testing of the assumption that the fragile X locus is normally subject to X inactivation. We studied the expression of the FMR1 gene from inactive X chromosomes by reverse transcription of RNA...
متن کاملX inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTAIRE-1 genes in human and mouse.
Previously reported data on the X inactivation status of the ubiquitin activating enzyme E1 (UBE1) gene have been contradictory, and the issue has remained unsettled. Here we present three lines of evidence that UBE1 is expressed from the inactive X chromosome and therefore escapes X inactivation. First, by RNA in situ hybridization, UBE1 RNA is detected from both the active and inactive X chro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2011